
The TEAM API Open Architecture Methodology

John L. Michaloski

National Institute of Standards and Technology

Sushil Birla

University of Michigan

Richard E. Igou

Y12 and Oak Ridge National Laboratory

Harry Egdorf

Los Alamos National Laboratory

C. Jerry Yen

General Motors

Douglas J. Sweeney George Weinert

Lawrence Livermore National Laboratory

Abstract

Open architecture technology o�ers great potential for improving tomorrow's controllers. With an
open architecture, controllers can be built from multi-vendor, plug-compatible components. The desire
for open-architecture controller components is high, but vendors are slow to respond. One reason for the
delay in industry action is that no clear open-architecture solution has evolved. In an e�ort to promote
open architecture control solutions, the Technologies Enabling Agile Manufacturing (TEAM) program
for Intelligent Closed Loop Processing (ICLP) sponsors an Application Programming Interface (API)
workgroup. This paper reviews the TEAM API workgroup's open architecture e�orts. The goal of the
TEAM API workgroup is to specify standard APIs for a set of open architecture controller components.
The review includes the TEAM API de�nition of open architecture, as well as the advantages and
impediments to open architectures. An overview of the TEAM API reference model including the TEAM
API core modules, application framework and speci�cation methodology is given. Overview of the TEAM
API speci�cation methodology includes discussion of the API de�nition and language strategy, de�nition
of the client/server behavior model, motivation for the use of proxy agent for distributed communication,
and bene�ts of foundation classes and reusable software.

1 BACKGROUND

Most Computer Numerical Control (CNC) motion and discrete control applications incorporate proprietary
control technologies that have associated problems: non-common interfaces, higher-integration costs, and
specialized training. On the other hand, a modular, standard-based, open-architecture controller is built
from multi-vendor, plug-compatible modules and component parts. With openness, modules can be added,
replaced, recon�gured, or extended based on the functionality required. Modi�cations to a module should
provide equivalent or better functionality as well as o�er di�erent performance levels. Ideally, the modules
should be platform and execution environment independent.

However, it is important to note that openness alone does not achieve plug-and-play. One vendor's idea
of openness need not be the same as another vendor's. Openness is but one step towards plug-and-play. In
reality, plug-and-play openness is dependent on a standard. This leads to the following de�nition of an open
architecture controller:

No approval or endorsement of any commercial product by the authors or their employers is intended or implied.

Certain commercial equipment, or materials are identi�ed in this report in order to facilitate understanding. Such

identi�cation does not imply recommendation or endorsement by the authors or their employers, nor does it imply

that the materials or equipment identi�ed are necessarily the best available for the purpose.

This publication was prepared, in part, by United States Government employees as part of their o�cial duties and

is, therefore, a work of the U.S. Government and not subject to copyright.

An open architecture control system is de�ned and quali�ed by its ability to satisfy the following requirements:

Open provides access to module internals, ability to piece together systems module by module, ability to
modify the way a controller performs certain actions, and ability to start small and upgrade as a system
grows.

Modular refers to the ability of controls users and system integrators to purchase and replace controller
modules without unduly a�ecting the rest of the controller, or requiring extended integration engineer-
ing e�ort.

Extendible refers to the ability of sophisticated users and third parties to incrementally add functionality
to a module without completely replacing it.

Portable refers to the ease with which a module can run across platforms.

Scalable like portability, refers to the ease with which a module can be made to run in a controller based
on another platform. But, unlike portability, scalability allows di�erent performance based on the
platform selection. Scalability means that a controller may be implemented as easily and e�ciently
by systems integrators on a high-speed processor, as a distributed multi-processor system, or on a
stand-alone PC to meet speci�c application needs.

Maintainable supports robust plant oor operation (maximum uptime), expeditious repair (minimal down-
time), and easy maintenance (extensive support from controller suppliers, small spare part inventory,
integrated self-diagnostic and help functions.)

Economical allows the controller of manufacturing equipment and systems to achieve low life cycle cost.

Standard allows the integration of o�-the-shelf hardware and software components into a controller infras-
tructure that supports standard interfaces and a standard computing environment. A standard is vital
to plug-and-play.

Satisfying more, if not all, of the open requirements leads to better openness. Thus, quantifying and
measuring openness can be done by comparing a claim of openness against the above requirements. Herein,
the concept of an open-architecture control system that supports openness, and the auxiliary requirements
will be identi�ed as \open, openness or open architecture."

1.1 Advantages of Open Architecture Technology

The advantages of open architecture system can best be illustrated by the types of problems it could solve.
The TEAM API solicited speci�c instances of problems encountered by users of proprietary controllers. Com-
plaints about the work-arounds to overcome proprietary systems were common. From this solicitation, the
following list containing explicit requirements of an open-architecture was generated. An open architecture
should be able to do the following:

� provide a migration path from existing practices;

� allow an integrator/end user to add, replace, and recon�gure modules;

� provide the ability to modify spindle speed and feed rate according to some user-de�ned process control
strategy;

� allow access to the real-time data at a predictable rate up to the servo loop rate;

� allow full 3-D spatial error correction using a user-de�ned correction strategy;

� decouple user interface software and control software and make control data available for presentation;

� provide communication functions to integrate the controller with other intelligent devices;

2

� increase the ability for 3rd party software enhancements. Examples of 3rd party enhancements include:

{ replace a PID control law with a more sophisticated Fuzzy Logic control law

{ collect servo response data with a 3rd party tool, and set tuning parameters in the appropriate
control law

{ add a force sensor, and modify the feed rate according to a user de�ned process model

{ perform high resolution straightness correction on any axis

{ replace the user interface with a 3rd party user interface that emulates a user interface familiar
to your machine operators.

The initial validation strategy for the TEAM API would be to insure that this list of capabilities can be
addressed.

1.2 Impediments to Open Architecture Technology

On paper, de�ning an open architecture speci�cation sounds simple. Yet, it is not because of the di�culty
de�ning a speci�cation that is safe, cost-e�ective, and supports real-time performance.

A speci�cation must factor in current practices, as well as anticipate evolving technologies. To be success-
ful, the open architecture de�nition must be cost-e�ective and implementable given current market practices.
Further, an open architecture speci�cation cannot be so rigidly de�ned as to later impede future technologies.
An open architecture speci�cation must be able to grow.

Of great importance within the controls domain is the requirement for guaranteed, hard-real-time perfor-
mance. Without this, safety is at risk. Safety is a major concern voiced within the controller industry which
is especially concerned with the issues of liability and delegation of responsibility within an open architec-
ture paradigm. It is assumed that new industry practices would have to be adopted for open architecture
controllers. A greater responsibility would be placed on the integrator. Conformance testing would now
play a larger role. Conformance could require regression and boot-up testing and veri�cation procedures to
guarantee proper operation.

Another problem is that de�ning a speci�cation that can map into a broad range of platforms and
implementations is not easy. Here the problem of using a speci�cation language that can map to any number
of implementations is encountered. The TEAM API resolution to this problem was to use a technology
neutral language - Interface De�nition Language (IDL) - which will be discussed later.

A further hindrance is the fact that modules are not \self-contained." De�ning an infrastructure within
which the modules can operate is necessary and quite di�cult. We consider the infrastructure to be de�ned
as the services that tie the modules together and allow modules to use platform services. The infrastructure
is intended to hide speci�c hardware and platform dependence; however, this is often di�cult to achieve.

Containing the scope of the speci�cation is also di�cult. Openness goes beyond run-time APIs. There
can be \other" APIs, including con�guration, integration, and initialization. As an example, consider the
simple use of a math library API. Even there, speci�cation of the math library implementation must be done
to select either a oating point processor or software emulation.

Finally, group and industry dynamics can be a problem. From a workgroup perspective, getting people to
agree can be a challenge. From an industry perspective, many companies do not perceive any direct bene�t
from an open architecture. Overcoming the workgroup inertia and industry skepticism by promoting and
articulating the bene�ts of open architecture remains a fundamental key to open architecture acceptance.

2 REFERENCE MODEL

The TEAM API requirements were derived from the OMAC or \Open Modular Architecture Controller"
requirements document [OMA94]. The OMAC document describes the problem with the current state of
controller technology and prescribes open modular architectures as a solution to these problems. OMAC
de�nes an open architecture environment to include Platform, Infrastructure, and Core Modules. TEAM

3

A

A

Axis Group

- interpretation
- kinematics coordination trans-
formation
- dynamic offset (e.g. sensing
inputs) and overrides
- multi-axis coordination
- block look-ahead
- acceleration/deceleration
- feedhold
- operation stop
- execution on compensation
look-up tables

Part Program Translator

- part program conversion to
control plan format
- file management and version
control

Control Law

- trajectory following (loop clo-
sure)
-gain tuning

Task Coordination Module

- mode switching
- handle task coordination pro-
grams (e.g., SFC programs)
-finite state machine interpreta-
tion
- discrete logic and motion coor-
dination
- block cycling, (i.e. request next
block from translator)

Discrete Logic

- provide finite state machine
interpretation
- perform simple PLC functions

Human Machine Interface

- system snapshot
- event handling
- configuration screens
- diagnostic screens
- maintenance screens

Axis

- trajectory following that uses
control law
- servo compensation
- execution on compensation
look-up tables

Kinematics

- kinematics calculations
- tool offsets, tool radius correc-
tion
- coordinate system translations

Process Model

- feedrate override
- thermal compensation
- sensor integration

IO Points

- read/write data
- data subscription
- data notification

Machine-to-Machine

- start-up, shutdown
-transfer file across network
- program invocation and job
control (e.g., start, stop, pause,
etc. program)
- event monitoring
- domain-independent data sam-
pling (SCADA)

Figure 1: TEAM API Core Modules

API de�nes a module to be a piece of the system that is su�ciently de�ned such that it can be replaced
by another piece from a third party. This, at a minimum, will maintain the same service through the same
interfaces, have the same potential states, and have the same state transition conditions.

Using the OMAC speci�cation model as a baseline, Figure 1 diagrams the TEAM API Core Modules
including a brief description of a module's general functional requirements. The Core Modules have the
following general responsibilities:

Task Coordinator modules are responsible for sequencing operations and coordinating the various motion,
sensing, and event-driven control processes. The task coordinator can be considered a �nite state
machine (FSM) interpreter accepting directives from an operator or as Sequential Function Charts
(SFC) programmed in IEC 1131-3[IEC93].

Part Program Translator modules are responsible for translating the part program into control se-
quences.

Axis Group modules are responsible for coordinating the motions of individual axes.

Axis modules are responsible for motion control.

Kinematics Models modules are responsible for kinematics con�guration and calculation, geometric cor-
rection, tool o�sets, radius corrections, and e�ects of tool wear. Computing forward and inverse
kinematics, mapping and translating between di�erent coordinate systems, and resolving redundant
kinematic solutions are examples of kinematic model functionality.

Control Law modules are responsible for loop closure calculations to close the motion loop.

4

Human Machine Interface or HMI modules are responsible for remotely handling data, command, and
event service of an internal controller module. De�ning a presentation style (e.g., GUI look and feel,
or pendant keyboard) is not part of TEAM API e�ort.

Process Model is a module that contains dynamic data models to be integrated with the control system.
Based on external stimuli or static modeling techniques, the process model produces adjustments or
corrections to nominal rates and path geometry. Feedrate override and thermal compensation are
examples of process model functionality. The process model is important to the concept of extensible
open systems.

Discrete Logic modules are responsible for implementing system control laws that can be characterized
by a Boolean function from input and internal state variables to output and internal state variables.
More than one discrete logic module is permitted, but not necessary. Multiple discrete logic modules
is similar to having many PLC's networked together within the same computing platform.

I/O Points form an IO system that is responsible for the reading of input devices and writing of output
devices through a generic read/write interface.

Machine-to-Machine modules are responsible for connecting and coordinating controllers from di�erent
domains or address spaces. An example of this functionality is the communication from a Shop Floor
controller to an individual machine controller on the oor.

2.1 Reference Architecture

The TEAM API does not have an explicit reference architecture. Instead, TEAM API endorses component
based technology in order to support the OMAC core modules. At a higher level, the assembly of the OMAC
modules into a system requires an integration or reference architecture. TEAM API does not prescribe a
reference architecture. Rather, TEAM API provides API for each module and o�ers an assembly strategy
described below for connecting modules. Suggestions are o�ered, but are not mandated.

TEAM API assumes a module assembly described by this abstraction hierarchy:

� Foundation Classes

� Framework Components

� Core Modules

� Integration or Reference Architecture

� Application Architecture

The foundation classes are the building blocks that may be found in multiple modules. For example,
the class de�nition of a point would be found in most modules. Framework components are instances of
foundation classes that can be integrated into the core modules. For example, line, helix, and NURB are
framework components for the motion plan class. The core modules have the functionality as previously
outlined. An integration or reference architecture describes a con�guration methodology for component
topology, timing, and inter-component communication protocols. The output of the integration architecture
is the application architecture. With the application architecture, users can develop and run programs. Some
candidate distributed reference architectures include the following: agent-based, DCOM [DCO], CORBA
[COR91], RCS [Alb91], OSACA [OSA96], or EMC [PM93].

2.2 Application Framework

As stated, the TEAM API provides core modules, but does not mandate an integration architecture. The
TEAM API strategy is to build application control systems as a set of connected modules that communicate
through the published API. The emphasis of TEAM API module assembly is low-level that is aimed for the

5

Part Program
 Translator Line Arc

-x- -x-

Task

Axis

Axis1

Axis2

P V T

P V T

-C--C- -C-

Line Arc -x-

Sercos P V T

Software P V T

AM J

 Group

Coordinator

Nurb Weave-x-

Manual AutomaticJogging

D xyzKinematics

Nurb Weave

OMAC MODULE FRAMEWORK FRAMEWORK COMPONENTS

IO
System

D/A

Canbus

IO 1 IO 2 ...

Profibus

A/D

Figure 2: Control Framework

system integrator. At this level, the system integrator links \.o" object �les (or linked libraries) to assemble a
controller. The .o's correspond to procured modules bought as commercial o�-the-shelf technology (COTS).
The assembly of TEAM API modules in such a manner is referred to as the framework paradigm.

Object-oriented frameworks are sets of prefabricated software and building blocks that are extensible and
can be integrated to execute well-de�ned sets of computing behavior. Frameworks are not simply collections
of classes. Rather, frameworks come with rich functionality and strong \pre-wired" interconnections between
the object classes.

This contrasts with the procedural approach where there is di�culty extending and specializing func-
tionality; di�culty in factoring out common functionality; di�culty in reusing functionality that results in
duplication of e�ort; and di�culty in maintaining the non-encapsulated functionality. With frameworks,
application developers do not have to start over each time. Instead, frameworks are built from a collection
of objects, so both the design and the code of a framework may be reused.

In the TEAM API framework the prefabricated building blocks are the COTS implementations of the
OMAC modules and framework components. As a simple example, Figure 2 illustrates a framework for a
typical controller application. An application developer buys the modules, and then the application developer
\puts the pieces together."

Within the example, there is a task coordinator module which has containers for inserting capabilities
(in the �gure represented by a -C- framed by a diamond). The capabilities include Manual, Automatic or
Jogging. The application developer is free to put one or more of these capabilities into the task coordinator
or develop a unique capability. For Part Program Translation and Axis Group, the application developer is
already provided line and arc path descriptions but can plug in Nurb (Non-Uniform Rational B-Spline) or
Weave path descriptions. Once again, application developers could uniquely develop a path description. For
the Axis modules, the application developer has the possibility to do position (P), velocity (V) or torque
(T) control in software, hardware or some combination of hardware and software. For software P control,
the application developer would select a control law object from the Software set. For hardware P control,
the application developer would select a control law object from the Sercos set.

Using the TEAM API framework paradigm, application development involves three groups:

6

Users de�ne the behavior requirements and the available resources. Resources include such items as hard-
ware, control and manufacturing devices, and computing platforms. For behavior, the user de�nes the
performance and functionality expected of the controller. Performance includes such characteristics as
how fast or how accurate the application must be. Functionality de�nes the controller capability such
as the ability to handle planar part features versus complex part features.

System Integrators select modules and framework components to match the application performance
and functional requirements. The system integrator con�gures the modules to match the application
speci�cation. The system integrator uses an integration architecture to connect the selected modules
and veri�es the system operation. The system integrator also checks compliance of modules to validate
the user-speci�cation of performance and timing requirements.

Control Component Vendors provide module and framework component products and support. For
control vendors to conform to an open architecture speci�cation, they would be required to conform
to several speci�cations including the following:

� customer speci�cations

� module class speci�cation

� system service speci�cation

The system service describes the platform and infrastructure support (such as communication mech-
anisms) and the resources (disks, extra memory, among others) available. Computer boards have a
device pro�le that includes CPU type, CPU characteristics and the CPU performance characteristics.
Included within the pro�le is the operating system support for the CPU. A spec sheet or computing
pro�le [SOS94] is required to describe the system service speci�cation that would include such areas
as platform capability, control devices, and support software.

2.3 Application Example

Figure 3 illustrates the major systems of a controller as they might be con�gured for a typical numerical
control application. The application example describes programmed numerical control for a two-axis lathe.
Axis components are assumed be the same for each axis and consist of a PWM motor drive, an ampli�er
enable control, an ampli�er fault status signal, an A-QUAD-B encoder with marker pulse and switches for
home and axis limits. Spindle drive components are assumed to provide a facility for setting spindle speed
and direction and to start and stop spindle rotation. A machine sensor system is assumed to consist of a set
of analog and digital sensors monitoring coolant temperature and oil pressure. A machine safety system is
assumed to consist of a set of input switches monitoring E-Stop, Power-Up and Reset. A control pendant
is assumed to provide an operator with a simple set of control functions including part program selection,
Cycle Start/Stop, Feedhold, Feedrate Override, Manual Data Input and Manual Jogging. Machine part
programs are assumed to be in EIA RS274D format. Control pendant is assumed to display machine status
to an operator including indication, machine modes, program status and machine diagnostics.

Figure 3 shows the implementation as two sets of components, the larger box of components is the
real-time controller and the smaller box contains the HMI mirror. More on the mirrored HMI system will
be presented later. The example controller is made of seven major systems. Each system is made up of
one or more replaceable modules. Modules are tied together through exposed interfaces. A key concept
in modular open architectures is that the system may be incrementally adapted to changing requirements.
Three mechanisms for adapting the system are adding modules, replacing modules and recon�guring modules
by reconnecting the interfaces. The seven major systems that make up the example controller include:

IO System consists of one or more IO modules. Each IO module corresponds to a sensor or actuator. The
IO module interfaces are used by axis modules, axis group modules, logic control modules and human
interface modules. Sample timing for IO modules is controlled by the task coordination module.

7

Axis Control 2

Human-Machine
Interface

Task Coordinator

IO POINT
Feedrate Override

Part Program
Interpreter

Axis Group

Axis Control 1

I/O PT

HW1

I/O PT

HW2

I/O PTs

limit+
limit-

Home
Amp-
Fault

I/O PT

Amp-
Enable

I/O PTs

RESET
ESTOP

POWER-
UP

I/O PTs

Sensor 1
Sensor 2

I/O PT

E STOP
OUT

Discrete Logic

E STOP, Machine Sensors

PWM
Drive

Machine
Status
Sensors

E Stop

Power Up

RESET

Process Model

Kinematics

Encoder
A Quad B + Z

HW!: One axis power drive, HW2 :one axis 4 channel encoder

Axis Control 2

Task CoordinatorIO POINT

Part Program

Axis Group

Axis Control 1

I/O
PT
HW1

I/O
PT
HW2

I/O
PTs
limit+
limit-

Home
Amp-

I/O
PT

I/O
PTs

RESET
ESTOP

I/O
PTs

Sensor 1
Sensor 2

I/O
PT

Discrete Logic
Process

Kinematics

Limit +
Limit -
Home
Amp-Fault

Figure 3: TEAM API Example System

Axis System consists of one or more axis modules which, in turn, contain control law modules. Each axis
module requires two or more IO module interfaces. These represent sensor input and actuator output.
Each axis module provides a command interface that is normally connected to an axis group module.
Control law modules may provide additional interfaces that allow features such as status information
for the human interface, monitoring/tuning of internal parameters, real time data collection and real
time algorithm modi�cation. Each axis module references one or more control law modules which apply
a servo algorithm to generate a new actuator command based on current sensor readings, commanded
set points and machine state.

Trajectory Generation System consists of one or more axis group modules, a process module and a kine-
matics module. An axis group module requires at least one control loop interface for each coordinated
degree of freedom in the computed trajectory. It may also require additional control interfaces if it
supports algorithmically related motions (electronic gearing). An axis group module may also require
one or more IO module interfaces to provide sensor modi�ed generation such as impedance control.
An axis group requires a process model module and a kinematic model module to handle application
and device modeling. An axis group module provides at an interfaces which is normally connected to
a task coordinator module.

Process Model provides support to each axis group to receive dynamic input such as feedrate and spindle
override.

Kinematics Model provides support to an axis group for coordinate transformation information, such as
relative o�set.

Task Coordinator System normally consists of one task coordinator module. A task coordinator is the
central point for coordination of actions. A task coordinator understands the controller con�guration
to say what modules are in the system and how to start up the modules. A task coordinator is the
controller's main sequencing engine, \what happens when," or the highest level Finite State Machine
within the controller. A task coordinator may provide an interface normally used by the human
interface module for machine mode and program sequencing.

8

Discrete Logic System consists of one or more discrete logic modules. Each of these discrete logic modules
is a �nite state machine, similar in functionality to the task coordinator module. The system normally
contains a large number of discrete logic modules with a variety of requirements for IO module inter-
faces. Logic control modules provide an interface to the task coordinator module that allow status and
event transition information to be conveyed. Logic control modules may also provide an interface to
be used by part program interpreter modules. Discrete logic module operation is distinguished from
control law module operation by the fact that logic control modules execute Boolean equations to
generate new IO output values and detect event transitions based on IO inputs and machine state.

Part Program Translator System consists of one or more part program translator modules. Part Program
Translator is responsible for reading and translating programs which represent machine operation
and tooling. Part Program Translator output is a list of control plans to be interpreted by the task
coordinator, motion subsystem or discrete logic subsystem. A part program interpreter uses several
system infrastructure services - primarily �le system services. A part program interpreter provides an
interface that is normally connected to a human interface module.

Human Machine Interface system is composed of a set of HMI objects which mirrors the state of the
controller objects. The main assumption is that HMI objects are a snapshot of control system objects
and use proxy agents for communication.

3 SPECIFICATION METHODOLOGY

To satisfy the OMAC open architecture speci�cation, a standard API for each of the Core Modules would
be de�ned. Consequently, the primary goal of the TEAM API workgroup is to de�ne standard API for
the Core Modules. This section will re�ne the concept of \API" and describe the TEAM API speci�cation
methodology. The API speci�cation methodology applies the following principles:

� Stay at API level of speci�cation. Use IDL to de�ne interfaces.

� Do not specify an infrastructure.

� Use Object Oriented technology.

� Use general Client Server model, but use state-graph to model state behavior.

� Use Proxy Agents to hide distributed communication.

� Finite State Machine (FSM) is model for data and control.

� De�ne Foundation Classes to foster the concept of reusable assets.

� Mirror system objects in human machine interface.

The following sections will discuss these principles.

3.1 API Speci�cation

API stands for Application Programming Interface, and refers to the programming front-end to a conceptual
black box. The math function ``double cos(x)'' speci�es the function name, calling sequence, and return
parameter, not how the cosine is implemented, be it table lookup or Taylor series. Of importance to the
API speci�cation is the function \signature" and its calling and return sequence, assuming of course, that
cosine doesn't take too long. Behavior is an explicit element within the API de�nition and relies on a de�ned
state transition model. A (standard) API is helpful because programming complexity is reduced when one
alternative exists as opposed to several. For example, the cosine signature is generally accepted as cos(x),
not cosine(x). This is a small but signi�cant standardization.

9

ICON NIST UMICH

Application API
Specifications

TESTBEDS

Implementation

API Standard

JAVA C++

JAVA C++C++/EMC

C++/CORBA

IDL

RTOS Kernel CC C

Specification
ROSE

S
P

E
C

IF
IC

AT
IO

N
 L

E
V

E
L

Figure 4: Speci�cation Language Mapping

At a programmatic level, the importance of a standard API can be seen within the Next Generation
Inspection Project (NGIS) at NIST[NGI]. The NGIS project has integrated three commercial sensors and
one generic sensor into the Coordinate Measuring Machine controller. Taming diversity was a problem.
Each sensor had a di�erent \front-end" - one had a Dynamically Linked Library (.DLL) interface, one had
a memory mapped interface, one had a combination port and memory mapping. None of the sensors had
the same API. Yet, all of the sensors were \open."

There exists a problem selecting the API speci�cation language. The speci�cation language must be
exible enough to support a variety of implementation languages and platforms. TEAM API chose IDL, or
the Interface De�nition Language, for its speci�cation language [COR91]. IDL is a technology-independent
syntax for describing interfaces. In IDL, interfaces have attributes (data) and operation signatures (methods).
IDL supports most object-oriented concepts including inheritance. IDL translates to object-oriented (such
as C++ and JAVA) as well as non-object-oriented languages (such as C). IDL speci�cations are compiled
into header �les and stub programs for direct use by application developers. The mapping from IDL to any
programming language could potentially be supported, with mappings to C, C++ and JAVA available.

To clarify the problem of unifying the speci�cation, consider the mapping of the TEAM API IDL onto
three di�erent validation testbeds. Figure 4 illustrates mapping IDL to the di�erent implementation strate-
gies. For ICON, the standard API in IDL has to be mapped into JAVA. At the University of Michigan,
they are using the ROSE CASE tool to design their controller. ROSE accepts C++ header through a re-
verse engineering process. At the NIST testbed, the IDL will be translated into C++ headers and use the
Enhanced Machine Controller and its infrastructure[PM93]. For these three implementations, only the IDL
speci�cation can be mapped into all the languages needed to support the applications.

3.2 Object Oriented Technology

TEAM API uses an object-oriented (OO) approach to specify the modules' API with class de�nitions. The
following terms will de�ne key object-oriented concepts. A class is de�ned as an abstract description of the
data and behavior of a collection of similar objects. Class de�nitions aggregate both data and methods to
o�er encapsulation. An object is de�ned as an instantiation of a class. For example, the class SERCOS-Driven

10

Axis describes objects in the running machine controller. A 3-axis mill would have three instantiations of
that class { the three objects described by that class. An object-oriented program is considered a collection
of objects interacting through a set of published APIs. A by-product of an object-oriented approach is
data abstraction which is an e�ective technique for extending base types to meet the programmer needs.
A \complex number" data abstraction, for example, is certainly more convenient than manipulating two
doubles.

3.2.1 Inheritance

Inheritance is useful for augmenting data abstraction. OO classes can inherit the data and methods of
another class through class derivation. The original class is known as the base or supertype class and the
class derivation is known as a derived or subtype class. The derived class can add to or customize the features
of the class to produce either a specialization or an augmentation of the base class type, or simply to reuse
the implementation of the base class. To achieve a framework strategy, all TEAM API class signatures
(methods) are considered \virtual functions." Virtual functions allow derived classes to provide alternative
versions for a base class method.

Using an Axis module as a server, assume that all the axis does is set a variable x.

class Axis

f

virtual void set x(float x);

private:

double myx;

g

application()

f

Axis ax1;

ax1.set x(10.0);

g

To extend the server, a base class to add an o�set to its value before each set is derived. This could also
be achieved on the server side if so desired.

class myAxis : public Axis

f

virtual void set x(float x)f x= x + offset; Axis::set x(x); g

private:

double myx;

double offset; // set elsewhere for o�set calculation

g

application()

f

Axis ax1;

myAxis ax2;

double val;

double offset;

val=10.0;

11

X

X’

X

X

.

..

O

ε

X’ OFS

XOFS OOFS

TUNING PARAMETERS

Figure 5: General Control Law

ax1.set x(val+offset); // explicit o�set in application code

ax2.set x(val); // o�set hidden by con�guration

g

3.2.2 Specialization

TEAM API leverages the OO concept of inheritance to use base and derived classes to add specialization.
When de�ning a control law, one has many options including PID, then Fuzzy, Neural Nets, and Nonlinear.
This plethora of options implies a need to contain the realm of possibilities. The TEAM API approach is to
de�ne a base type (generally corresponding to one of the OMAC Core Modules) and then add specialized
classes.

The control law module illustrates the base and derived class specialization. The responsibility of the
Control law module is conceptually simple { use closed loop control to cause a measured feedback variable
to track a commanded setpoint value using an actuator.

Figure 5 illustrates the de�nition of a base control law. The concept of tuning is encapsulated within
the black box and is conceptually controlled via \knob turning." The concept of accepting third party
signal injection is handled by the inclusion of pre-and post-o�sets (or injection points). These o�sets allow
sensors or other process-related functionality to \tap" and dynamically modify behavior by applying some
coordinate space transformation. The IDL de�nition of the illustrated control law module follows. Each IDL
attribute maps into a get and a set accessor methods.

interface CONTROL LAWf

// Attributes

attribute double X;

attribute double Xdot;

attribute double Xdotdot;

attribute double output;

attribute double actual;

attribute double following error;

attribute double XOffset, OutputOffset, XprimeOffset;

// Operations

API::Status calculate control cmd();

API::Status init(); // clear time history

12

KAF

Σ O

X’

KX’

XOF

Σ

Σ

X’OFS

KVF

KCF

.

OOF

 X

X

 oo

ε

KP KI KD

PID Compensator
-

+
+ +

+
X

 ..

o

Figure 6: PID Control Law

g;

Each CONTROL LAW specialization is a subtype whereby each subtype inherits the de�nition of the super-
type. By applying this concept, an evolutionary process evolves to adapt to changes in the technology. At
�rst, only highly-demanded subtypes, such as PID, were handled. Figure 6 conceptually illustrates the PID
specialization of the control law. The IDL de�nition of the PID control law follows.

interface PID TUNING: CONTROL LAWf

// Attributes

attribute double Kp, Ki, Kd;

attribute double Kaf, Kvf, Kcf, Kxprime;

g;

TEAM API also uses inheritance to maintain levels of complexity. Level 0 would constitute base function-
ality seen in current practice. Level 2 would constitute functionality expected of advanced practices. Level
3, 4,..., n would constitute advanced capability seen in emerging technology, but unnecessary for simple
applications.

3.3 Client Server Behavior Model

TEAM API adopts a client server model of inter-module communication. In the client/server model, a
module is a server and a user of a module is called a client. Modules can act as both a client and a server
and cooperate by having clients issue requests to the servers. The server responds to client requests. A client
invokes class methods to achieve behavior. A client uses accessor methods to manipulate data. Accessor
methods hide the data physical implementation from the abstract data representation. The server reacts to
the method invocation and performs the corresponding method implementation and sends a reply (either an
answer or a status) back to the client.

As a server, a module services requests from clients that can be immediately satis�ed or that may
require multiple cycles. Multiple cycle service requests require state space logic to coordinate the interaction.
TEAM API de�ne three types of service requests: (1) parametric requests, (2) commanded requests, and
(3) administrative methods.

Parametric service requests are generally the get/set methods and are, in theory, immediately satis�ed.
They do not require state space logic.

13

RESET

INIT

DISABLED

ERROR

EXECUTING

estop()

init()

startup() (second pass)

enable()

“command”()

done stop error/estop

Lower Finite State Machine

finished terminated

resetError

CONFIGURING configure

 configured

aborted

FINISHING ABORTEDSTOPPING

DOWN
shutdown()

reset()

ESTOP DOWN

ENABLED/
READY

Figure 7: Generalized State Diagram

Command service requests are command methods which may run one or many axis cycles - such as
move to absolute position. Repeated cycles of the same command methods require a state transition mecha-
nism for coordination between the client and the server. Service requests require a state space to coordinate
the client server interaction.

Administrative service requests coordinate the execution of a module, for example, processServoLoop,
enable, disable for Axis module. The processServoLoop function provides cyclic execution - e.g., axis
module is executed once per servo loop period. In this mode, the axis software would be running as a data
ow machine: at every period, it accesses the data (e.g., commanded position, actual feedback) and derives
a new setpoint. Administrative methods can require a state space, such as enabled/disabled/running, but
will be considered as part of the service request state space.

Service requests that run multiple cycles require a state space mechanism for coordination between the
client and the server. Without such state coordination, the client could not monitor the server's progress
toward satisfying the client's request. TEAM API adopts a generalized state model as illustrated in Figure 7.
A state model describes the behavior of a module and consists of states and state transitions. For clients
to understand a server module's control logic and react accordingly, the client and server must agree on the
same state graph representation of valid states and state transitions. Figure 7 shows the typical states found
in any control module { start, initialized, con�gured, enabled/ready, executing, and aborted.

For purposes of representing a module's state space, the concept of administrative states and process
commanded states are combined within the state graph. Most of the enumerated states are administrative
in order to coordinate the module computational engine. To service a command request, the module enters
into the \executing" state. In the \executing" state, client/server coordination uses a lower �nite state
machine for coordination. This lower �nite state machine for command services is module dependent.

3.3.1 Threads of Control

Parametric and Command service methods may be separated from Administrative methods and executed
in separate threads of control. Figure 8 illustrates a server with multiple clients and two processes: an
Axis Group process for issuing setpoints and an integration architecture process to coordinate execution.

14

Integration
Process

Axis Group

Axis Module

Commanded
Methods
e.g. home()

Administrative
Methods
e.g. processServoLoop()

Figure 8: Multiple Threads of Control

Generally, the commanded service requests would come from an Axis Group module that is issuing setpoints
to multiple axes. Another thread of execution will handle module integration by sequencing execution of the
axis module. This integration module may be tied to some hardware device (such as a timer) to guarantee
periodic execution behavior.

The following code snippet illustrates the \Small Picture" in assembling the modules. An integration
architecture reads and writes between external interfaces between modules, and then in a separate thread of
execution calls each modules administrative \execute function."

The example will develop a connection between an Axis Group module, an Axis module and an actuator
and encoder IO points. First, the object naming and registry will be sketched. The integration creates
object references (i.e., io1, io2, ax1, trajgen1) and then binds addresses to the objects through some name
registration.

integration process init()f

// initialize parameters

IOpoint io1= new IOpoint("encoder1");

IOpoint io2= new IOpoint("actuator1");

Axis ax1= Axis("Axis1");

g

In this case, IO points were created and then an Axis and AxisGroup constructor was called. This
information would typically be furnished by the Task Coordinator module because it is de�ned to have the
knowledge of the application con�guration.

Next, an integration process to synchronize the execution of the modules follows.

// Integration architecture puts this together

integration process()f

// Use state to cause module to execute - probably at di�erent rates

if(ax1.state() == running) ax1.processServoLoop();

if(axgrp1.state() == running) axgrp.execute();

...

g

The Axis module ax1 has a method processServoLoop which is cyclical process that inputs, computes
and outputs. This process could also be a �nite state machine that depend on the state of the ax1 object.

15

Axis::processServoLoop()f

Measure value;

// Read sensor - i.e, the current encoder value with IO system

value=io1.get();

// Set the next actuator value

ax1.set(value);

// Get the next value set by the trajectory generator

value=get command();

// Put out value to DAC, (scaling done by io system)

value=ax1.get output();

io2.put(&value);

g

3.4 Proxy Agent Technology

Client/server interaction can be local or distributed. In local interaction, the client uses a class de�nition to
declare an object. When a client accesses data or invokes object methods, interaction is via a direct function
call to the corresponding server class member. At its simplest, local interaction can be achieved with the
server implemented as a class object �le or library. Interaction is connected by binding the client object to
a newly created server object implementation. Such a binding could be done by static linking, or with a
dynamically linked library (DLL) or through a register and bind process that does not use the linker symbol
table.

When distributed service is needed a proxy agent is used which is a set of objects that are used to allow
the crossing of address-space or communication domain boundaries[M.S86]. The class describing a proxy
agent uses the API of some other class (for which it is a proxy) but provides a transparent mechanism that
implements that API while crossing a domain boundary. The proxy agent could use any number of lower
level communication mechanisms including a network, shared memory, message queues, or serial lines.

Below is a code example to illustrate the concept of proxy agents. We will assume that we have de�ned
an axis module by the class Axis that has but one method set x();. The following code would be found in
the axis module header �le (or API speci�cation):

class Axis : Environment

f

public:

void set x();

private:

double myX;

g

As a user, one would develop code to connect or bind to the axis module server, which in this case has the
name \Axis1." The bind service is similar to a constructor method, but returns a server reference pointer
and keeps track of the number of client pointer references to the server. The bind establishes a client/server
relationship with the axis module. The application code is the client, and when Axis methods are invoked,
a message is sent to the server. In the following code, the application sets the x variable to 10.0:

application()f

Axis � a1;

16

a1 = Axis:: bind("Axis1");

a1!set x(10.0);

g

If the server is colocated with the application, it is trivial to implement the object server. The Axis::set x

implements the value store.

Axis::set x(double x)f myX = x; g

However, for distributed communication, Axis::set x is de�ned twice - once on the client side and once
on the server side. On the client side we set up the remote communication, which in this case, is a sketch of
a remote procedure call.

Axis::set x(double x)f

callrpc(host, prognum, versnum, procnum, inproc, in, outproc, out)

g

On the server side, a server waits for service events (such as the bind, and the set x method). A
corresponding Axis::set x is de�ned to handle the x variable store. The server technology could handle
events in the background or use explicit event handling. In either case, the server actions are transparent to
the client.

Axis::set x(double x)f myX = x; g

server()f

/� register rpc server name �/

while(1) f /� service events �/ g

g

Within TEAM API, in order to achieve transparency within source code, all methods contain a parameter
�eld to allow customization of the infrastructure by de�ning an environment variable at the end of the
parameter list. This is an implicit augmentation performed by an IDL compiler. For any TEAM API calling
parameter list, the ENVIRONMENT parameter appears at the end of the calling sequence, as in:

void move(double x, double y, double z, ENVIRONMENT env = default);

The ENVIRONMENT can be used in several ways to tailor the infrastructure, such as to specify the remote
communication protocol and the necessary parameters during transmission. The ENVIRONMENT can also be
used to set an invocation time-out value or to pass security information. The ENVIRONMENT can be a stubbed
dummy and ignored by the called method.

The goal of the ENVIRONMENT parameter is to provide transparency between invoking function calls
locally or invoking function calls remotely. To provide for transparency between local and remote calls,
the ENVIRONMENT parameter �eld has a default argument initializer so that local (or remote) calls need not
supply this parameter.

The actual infrastructure supported by the ENVIRONMENT parameter will not be speci�ed within this
TEAMAPI document. Systems with a proprietary remote communication technology may use the ENVIRONMENT
parameter �eld to enable distributed processing. The ENVIRONMENT can also be used as a trap door to hide
other nonstandard operations. To enable compatibility with known remote processing requirements, TEAM
API uses accessor functions to manipulate object data members. The data format creates one or two acces-
sor functions { one to set and one to get { as de�ned by the cases for read only, write only, or read-write
combinations.

17

void set x(double inx, ENVIRONMENT env=default);

double get x(ENVIRONMENT env=default);

Note that the ENVIRONMENT parameter at the end of the parameter list is necessary.

3.5 Infrastructure

The infrastructure deals primarily with the computing environment including platform services, operating
system, and programming tools. Platform services include such items as timers, interrupt handlers, and
inter-process communications. The operating system (OS) includes the collection of software and hardware
services that control the execution of computer programs and provide such services as resource allocation,
job control, device input/output, and �le management. Real Time Operating System Extensions can be
considered platform services since these extensions are required for semaphoring, and pre-emptive priority
scheduling, as well as local, distributed, and networked interprocess communication. Programming tools
include compilers, linkers, and debuggers.

The TEAM API does not specify an infrastructure because many of the infrastructure issues are outside
the controller domain and would be better handled by the domain experts. Further, it is more cost-e�ective
to leverage industry e�orts rather than to reinvent these technologies. For example, commercial implemen-
tations of proxy agent technology are available. Microsoft has developed and released DCOM (Distributed
Common Object Model) for Windows 95 and Windows NT. Many implementations of CORBA (Common
Object Request Broker Architecture) are available and Netscape incorporates an Internet Interoperable ORB
Protocol (IIOP) inside its browser. The question concerning the hard-real-time capability of such products
remains. But, industry is acting to solve this problem. In the interim, control standards that could provide
a real-time infrastructure are available [OSA96].

Because there are so many competing infrastructure technologies, TEAM API has chosen to allow the
market to decide the course of the infrastructure de�nition. As such, to achieve plug-and-play module
interchangeability, a commitment to a Platform + Operating System + Compiler + Loader + Infrastructure
suite is necessary for it to be possible to swap object modules.

3.6 Behavior Model

For the TEAM API, behavior in the controller is embodied by �nite state machines (FSM). TEAM API uses
state terminology from IEC1131[IEC93]. An FSM step represents a situation in which the behavior, with
respect to inputs and outputs, follows a set of rules de�ned by the associated actions of the step. A step
is either active or inactive. Action is a step a user takes to complete a task which may invoke one or more
functions, but need not invoke any. A transition represents the condition whereby control passes from one or
more steps preceding the transition to one or more successor steps. Zero or more actions shall be associated
with each step.

For TEAM API, the �nite state machine (FSM) is the principal element of both the data ow and
control ow. As outlined previously, the client/server model has command requests. The FSM data are
passed within command methods from the sending TEAM API module to the receiving TEAM API module
to e�ect behavior. FSM are then used within a module to handle the control ow. A module executes an
FSM until it ends or is superceded by another FSM. How the FSM are implemented is not important to the
TEAM API. Rather, a general model of FSM behavior is de�ned in the API so that a TEAM API module
calls FSM state transition methods to initiate state changes.

Passing FSM between modules is fundamental to a exible, extensible controller. Without an FSM, there
is no explicit mechanism for sequencing an RS274 block containing simultaneous instructions. Without the
FSM, intelligence must be hard-coded into the Task Coordinator to \understand" in what order to sequence
and synchronize the block operations. Internally hard-coding the block decoding within the Task Coordinator
prevents easy controller modi�cation or extension.

Figure 9 illustrates the di�erent computational elements of a TEAM API module. The TEAM API
module supports module system administration (reset, init, startup, shutdown) that is handled by an
administrative FSM. One or more lower level operation FSM are possible depending on system complexity.

18

ADMINISTRATION

TEAM API MODULE COMMAND = FSM

...

FSM STATE

COMMAND
QUEUE

FSM STATE

FSM FSM ...

FSM

DOMINION

FSM

OPERATION

Figure 9: Computation Paradigm

The TEAM API module contains a queue, possibly of length 1, for queuing commands. Commands are
in the form of FSM. The TEAM API module may have one or more FSM executing on a dominion FSM
list. The dominion FSM list contains FSM that \rule" over other objects. In the diagram, the FSM are
represented by a rectangle within a diamond. The dotted line indicates an optional FSM.

For a TEAM API module, there can be several levels of FSM applicability. TEAM API does not dictate
the levels of FSM. In general, an outer FSM exists to handle module system administration. Module system
administration activities can include initialization, startup, shutdown, and, if relevant, power enabling. The
system administrative FSM must follow established safety standards. When the administrative FSM is in
the READY state, it is possible to descend into a lower level operation FSM. The operation FSM is optional
(as indicated by the dashes in the �gure), but is necessary in the task coordinator module. The task
coordinator operation FSM is called a Capability. Di�erent Capability are used to handle the di�erent
machine modes (manual, auto). When the operation FSM is in the READY state, it too can descend into
a lower programming or dominion level FSM. The dominion FSM \rules" over other objects by invoking
administrative and command methods. Since the module could \rule" over several objects, the potential for
multiple dominion FSM exists.

Within any of the three nested levels of FSM mentioned above, there may be more nested levels. For
example, at the operation level for part programming, there may be another level of FSM to handle a family
of parts. When a particular part is speci�ed, it may invoke a nested FSM that speci�es processing to be
performed speci�c to that part. The designer of a particular control system determines the number of nested
FSM levels, depending upon the complexity and organization of the controlled system.

A module comes up executing the administrative FSM and after several steps of initialization and insuring
safety of operation, a module is READY. At this point, a module is capable of \stepping down" the FSM
hierarchy to the dominion FSM. Clients can still invoke administrative methods but can now also invoke
command methods to queue an FSM. When enabled, a module will transfer FSM from the queue onto
the dominion list. Executing the FSM will generate output to subordinate servers. Clients can invoke
parametric methods to query server status. At any point during the processing of commands, a module
administrative state can change which will be reected in the lower level FSM. For example, instructing the
module administration to stop() will result in the administrative FSM and all dominion FSM stopping.

Command methods are de�ned as list management methods that put FSM objects onto the queue. Below,
a Task Coordinator would call the Axis Group ag to append the motion segment ms homing onto the axis
group queue.

MotionSegment ms homing; // parameters set by the part program translator(PPT)

ag!set next motion segment(ms homing);

19

TASK

Home
Capability

AxisGroup

Jog
Capability

Tool Change
Capability

Auto
Capability

Part Program
 Translator

CAPABILITIES
LIST

Pointer to one of these capabilities established at configuration/construction time.

Finite State
Machine Module

LEGEND

Discrete

List Pointer Reference
Pointer

COORDINATOR

 Logic

Capability Control
Plan Unit

Control
Plan Unit

MODULE

...

Figure 10: Controller Task Coordinator Capabilities

To sequence an FSM list, at a minimum, calling the execute() method until the isDone() boolean
condition is true, can sequence a FSM from start to �nish.

interface axis homing : ControlPlanUnit

f

attribute MotionSegment ms homing;// setup by PPT

attribute AxisGroup ag; // set by PPT - discussed later

execute() // called by Task Coordinator

f

if(firsttime) ag!set next motion segment(ms homing); // message passing!

else if(!ag!isOK()); // do error checking each cycle

g

isDone()f return(!ag!isHomed()); g // called by Task Coordinator

g

With this computation paradigm, di�erent TEAM API modules have di�erent command queue and FSM
dominion list sizes. The Task Coordinator has a one-element queue as well as a one-element dominion FSM.
The Discrete Logic module may have a one element queue, but generally has a multi-item dominion FSM
list, some active, some not active, to coordinate the IO points. The Axis Group has a minimum two-element
command queue, and generally a one-element dominion FSM list unless some blending of operations or
synchronization with a spindle FSM is required. The Axis module only has an extensive administrative
FSM. These di�erences will be further explored.

3.6.1 Task Coordinator

The Task Coordinator has a one-element FSM dominion list. The dominion FSM list is de�ned by the
Capability class de�nition. Associated with the Capability FSM is a ControlPlan list.

The Capability FSM supports stop, start, execute, isDone methods. For an application con-
troller, there is list of capabilities that a Task Coordinator can use. Figure 10 illustrates a typical milling
CNC application with Capability instances. Each Capability has reference pointers to TEAM API mod-
ules that it uses. Thus, the Home Capability and the Jog Capability each have reference pointers to the

20

Axis Group. When a Capability is executing, it coordinates the servicing of requests from the HMI. When
the Auto Capability FSM is executing, it interacts with the Part Program Translator.

FSM

CAPABILITY
start
execute

DEFAULT

stop - removes from list

HMI loads its capability into Task Coordinator, if Task Coordinator not already busy‘
If already busy, Task Coordinator either ignores request or asks current capability
to stop.

MANUAL stop()

AUTO start()

AUTO execute()

AUTO execute to start translating part program
and then control plan munching

load program

OPERATOR

push auto

push cycle

FSM

Figure 11: Step Through of a Task Coordinator Capability Sequence

Figure 11 illustrates a sequence of operations that takes a milling CNC from manual mode to automatic
mode. The diagram illustrates that a Capability FSM has start, stop, execute methods. There is the
assumption that there is a default Capability, probably an Idle Capability. In the scenario, the operator
pushes the auto button that causes the HMI to execute the Manual Capability stop method, and load
the Auto Capability onto the Task Coordinator queue. That cycle, the Task Coordinator will see that the
Manual Capability boolean isDone is True and will swap the Auto Capability FSM into the dominion
FSM list. The operator action to load a program will result in a program name loaded into the Part Program
Translator. When the operator pushes the cycle button, it will cause the Auto Capability FSM to start
sequencing Part Program Translator generated information. Part Program Translator information is called
ControlPlan and will covered in the next section.

3.6.2 Control Plan Units

When the Task Coordinator dominion is the Auto Capability, it coordinates with the Part Program Trans-
lator to generate control information. For di�erent applications, the Part Program Translator generates
di�erent ControlPlanUnit FSM. For the TEAM API, the base type control information is an FSM and is
called a ControlPlanUnit that may embed other ControlPlanUnit FSM. For di�erent control behavior, an
FSM has a unique class de�nition derived from the ControlPlanUnit. A series of ControlPlanUnit(s) is
a ControlPlan. A ControlPlan can be a simple list to represent sequential behavior or a complex tree to
represent parallel controller behavior.

A ControlPlanUnit FSM understands how to coordinate and sequence the logic and motion submod-
ules. The ControlPlanUnit FSM could put MotionSegments on the AxesGroup motion queue. The
ControlPlanUnit FSM can either put LogicUnits on the DiscreteLogic queue or activate LogicUnits

on the DiscreteLogic dominion list similar to a PLC scanning list. There are also ControlPlanUnits for
decision making. (e.g., loops, end program and if/then/else). Figure 12 illustrates a ControlPlan with one
of the ControlPlanUnits expanding the hierarchy of possible ControlPlanUnit options.

ControlPlanUnit has a method execute control plan() which does not need to be entirely self-
contained. It may make use of services of other objects. In addition, the ControlPlanUnit acts as a
container for embedded ControlPlanUnits. These embedded ControlPlanUnits are passed to the appro-
priate server, such as, a MotionSegment is passed to the Axes Group module. To use such a sequence of
control, the Part Program Translator builds a ControlPlanUnit for the Task Coordinator FSM that causes a
MotionSegment FSM to be pushed onto AxesGroup Queue. It is important to understand that this rippling
e�ect is a fundamental mechanism for passing data through a TEAM API controller. The following section
provides a simple code example to illustrate this rippling e�ect.

21

Control Plan
Unit FSM

Control Plan
Unit FSM

Control Plan
Unit FSM

Logic
Unit FSM

Motion
Segment FSM

...

C
on

tro
l P

la
n

S
ub

ty
pe

s

Motion

Progam Logic -SFC, loop, end program

Logic

Rate

Geometry - Line, Arc,

execute(). opt_stop,

Condition/Event

{Rate/Period}

execute()

CONTROL
PLAN

(List/Tree
 Manager)

Figure 12: Control Plan Hierarchy

3.6.3 Forward Reference

The TEAM API speci�es that ControlPlanUnit objects allow embedding of dynamic module references and
direct method calls. On the surface this approach appears implausible. However, because of proxy agent
technology, creating a \forward reference" by dynamically binding to an object is not hard to do. This
dynamic binding is bene�cial since it eliminates the need for static encoding of methods with id numbers so
that methods can execute across domains (address spaces). To enable forward references, the requirement
does exist for the infrastructure to support some \lookup()" method to map object names to addresses.

As an example, the application of proxy agent technology will be used by Part Program Translator
to generate a ControlPlanUnit for an axis homing FSM. The axis homing is an FSM with a transition
method execute and a query method isDone to determine FSM completion.

interface axis homing : ControlPlanUnit

f

attribute MotionSegment ms homing; // parameters set by the PPT

execute() // called by Task Coordinator

f

if(firsttime)

ag!set next motion segment(ms homing); // message passing!

else if(!ag!isOK()); // do error checking each cycle

g

isDone()f return(!ag!isHomed()); g // called by Task Coordinator

set axgrp(char � axgroupname) f ag=lookup(axgroupname); g

private:

Axis Group �ag; // ag set by the PPT

g

The execute and isDone methods use explicit calls to an Axis Group object. A \forward reference" to
the Axis Group object is required. Suppose the Part Program Translator (PPT) receives at constructor time
the name \axisgroup1" for the Axis Group object. Lookup of the \axisgroup1" must be available through
the underlying proxy agent technology. Without the proxy agent technology, one has to encode the object
ag and the methods ag->home and ag->isDone. This extra programming overhead is hidden by the proxy
agent technology.

22

IO

IOIO
MIST
ON

LR IO IO IO

SOFTWARE

HARDWARE

notify subscriber of IO change

FSM
in IEC1131

IO
Scanner

Mist On
Ladder Rung

FSM
Mist Rung

DISCRETE
LOGIC

Figure 13: Discrete Logic FSM List

3.6.4 Discrete Logic

The Discrete Logic module is similar to the Task Coordinator module in that it sequences and coordinates
actions through dominion FSM. However, for clarity, instead of a monolithic one-element dominion FSM,
the Discrete Logic module has a multi-item dominion FSM list. In general, a Discrete Logic dominion FSM
could be coded in any of IEC-1131 languages. Figure 13 illustrates the types of FSM that may be found
on the Discrete Logic dominion list for a typical milling CNC application. An FSM to handle IO scanning
would be expected. An FSM implemented as a Ladder Rung could be expected to handle a relay for turning
a Mist pump on. Below one �nds a sketch of the activity for turning the IO mist pump on.

mist pump on rung()

execute()

f logic: trigger relay to turn pump on

wait till IO/pt says pump is on

IOmist on;

g

At a higher level, a hardware-independent Mist FSM would be required to coordinate turning Mist on
and o�. Below is a sketch of pseudo code to sequence the Mist on operation. For coordination between FSM
logic, polling or event-drive alternatives exist to wait for the IO Mist on activity to complete.

mist on fsm()

f "MistOn LR IO <- on" to turn LR=ladder rung on

"subscribe to event that IO Mist On ==on"

"wait for event or poll for IO point for Mist On == on "

"done - deactivate FSM for scanning"

g

3.7 Foundation Classes and Data Representation

Exchange of information between modules relies on standard information representation. Such control do-
main information includes units, measures, data structures, geometry, kinematics, as well as the framework
component technology. Figure 14 portrays the conceptual organization of framework component software as
de�ned by foundation classes.

Consider the analogy of building materials. The primitive data types, shown at the bottom of Figure
14, are similar to such raw materials as sand, gravel, and clay. Using foundation classes and aggregating

23

Primitive Data Types (int,double, etc.)

Units Measures Containers
(matrix)(length)(meter)

Geometry
(coordinate frame; circle)

Kinematic structure

Control components
(pid; filters)

Axis components
(sensors, actuators)

Machine tool axis or robotic joints
(translational; rotational)

Axis groups Fixtures
Other tooling

Simple machines; tool-changers; work changers Processes

PlansMachining systems/cells; workstations

Figure 14: Software Reusable Assets

structural components, a control hierarchy of reusable software components can be built. Based upon the
reusable foundation classes, these assets can be used to build class libraries for such motion components as
sensors, actuators, and pid control laws.

Not all software objects have physical equivalents. Objects such as axis groups are only logical entities.
Axis groups hold the knowledge about the axes whose motion is to be coordinated and how that coordination
is to be performed. Services of the appropriate axis group are invoked by user-supplied plans (process
programs).

TEAM API has chosen two levels of compliance for data de�nitions. The �rst level de�nes named
data types to allow type-checking. The TEAM API uses the IDL primitive data types and builds on
these data types to develop the foundation classes and framework components. For control domain data
modeling, the TEAMAPI used data representations found in STEP Part Models for geometry and kinematics
[Inta, Intb]. Internally, one could, of course, use any desired representation. The STEP data representations
were translated from Express into IDL. Representation units are assumed to be in International System of
Units, universally abbreviated SI. Below is the basic set of data types which use STEP terminology for data
names but reference other terms for clari�cation.

Primitive Data

� IDL data types include constants, basic data types (oat, double, unsigned long, short, char,
boolean, octet, any), constructed types (struct, union and enum), arrays and template types
bounded or unbounded sequence and string.

� IEC 1131 types - 64 bit numbers

� bounded string

Time

Length

� Plane angle

24

� Translation commonly referred to as position

� Roll Pitch Yaw (RPY) commonly referred to as orientation

� STEP notion of a Transform which is composed of a translation + rpy, also commonly referred
to as a \pose."

� Coordinate Frame which is de�ned as a Homogeneous Matrix

Dynamics

� Linear Velocity, Acceleration, Jerk

� Angular Velocity, Acceleration, Jerk

� Force

� Mass

� Moment

� Moment of Inertia

� Voltage, Current, Resistance

The second level provides for more data semantics. The TEAM API adopted the following strategy to
handle data typing, measurement units, and permissible value ranges. Distinct data representations were
de�ned for speci�c data types. For example, the following types were de�ned in IDL to handle linear velocity.

// Information Model - for illustrative purposes

typedef Magnitude double;

// Declaration

interface LinearVelocity : Units f

Magnitude value; // should this value be used?

// Upperbound and Lowerbound, both zero ignore

Magnitude ub, lb; // which may be ignored

disabled();

enabled();

g;

// Application

LinearVelocity vel;

In this case, linear velocity is a special class. Unit representation is inherited from a general units model.
Permissible values are de�ned as a range from lowerbound to upperbound. The units and range information
are optional and may not be used by the application.

Another data typing problem that must be resolved concerns the use of a parameter. Not all parameters
are required or need be set by every algorithm. For example, setting the jerk limit may not be necessary for
many control algorithms. To resolve the parametric dependency issue it was decided to use a special value to
ag a parameter as \not-in-use". This approach seems simpler than having a use xxx type method for each
parameter. For now, TEAM API has decided that setting a parameter to a unrealistic \Not a Number" value
(such as MAXDOUBLE or 1.79769313486231570e+308) renders a parameter to be ignored or not-in-use. This
works for level 1 and level 2. Within level 2, the methods enable and disable were added for convenience.

25

CONTROLLER

HMI MIRROR

TC

Logic

Task Coordination

Axis

HMI
Task Coordination

HMI LogicHMI AXIS

Figure 15: Human Machine Interface Mirrors Controller

3.8 Human Machine Interface

The primary HMI objective of the TEAM API is to provide the ability to \bolt-on" a Human Machine
Interface to the controller. The HMI is intended to be independent of the choice of presentation medium,
the dialogue mechanism, the operating system, or the programming language.

TEAM API speci�es that every controller object has a corresponding HMI object \mirror". A simplifying
assumption is that HMI objects communicate to control objects via proxy agents. Figure 15 illustrates the
mirroring of a one axis controller that uses a task coordination module for coordination and sequencing in
conjunction with a discrete logic module.

The desired HMI functionality is best understood in the context of simple problems. Three \canonical"
problems exist that an HMI module must be able to handle regardless of the interface device. First, the user
must be able to receive solicited information reports about the state of the controller, such as a current axes
position. Second, the user must have command capabilities such as set manual mode, select axis, and then
jog an axis. Third, the user must be alerted when an exception arises, in other words, handle unsolicited
information reports. Following is an analysis of how the HMI mirror handles these cases.

To handle the information report functionality, an HMI mirror acts as a remote data base that replicates
the state and functionality of the controller object and then adds di�erent presentation views of the object.
These HMI mirrors are not exact mirrors of the controller state, but rather contain a \snapshot" of the
controller state. Figure 16 illustrates the interaction of the HMI mirror and the control object. In the basic
scenario of interaction, the control object is the server and the HMI mirror object is the client. Each HMI
mirror uses the accessor functions of get and set to interact with the control object. You will notice that
each host controller object and corresponding HMI mirror have a proxy agent to mediate communication.

To handle command functionality, the HMI mirror contains the same methods as the controller object
so that a command is issued by invoking a method remotely.

To handle abnormal events when polled monitoring may not be possible, an HMI mirror must serve as
a client to the control object so that it can post alert events. For such unsolicited information reports, the
control object uses an event noti�cation function, update current view, in which to notify the HMI mirror
that an event has occurred. This noti�cation in turn may be propagated to a higher-authority object.

26

HMI MIRROR
RT OBJECT

CLIENT OBJECT

present_view()

= proxy agent

get,set, methods

handle_event - alerts, errors, exception

Figure 16: Human Machine Interface

The following HMI de�nition gives the method extensions that a control object must support to become
a mirrored object.

interface HMI

f

// Presentation Methods

void present error view();

void present operational view();

void present setup view();

void present maintenance view();

// Events - to alert HMI that something has happened

void update current view();

g;

A bene�t to using the HMI mirrors is the potential for vendors to supply a control object, as well as
a presentation HMI object that can be incorporated into their Operator Interface. As an example of this
technology, a tuning package can provide a Windows-based GUI to do some knob turning. Another example,
is a tuning package that o�ers this capability to be plugged inside a Web browser. With this development,
unlimited component-based opportunities are available.

4 DISCUSSION

TEAM API has developed an API speci�cation that is scalable for the system design, integration and
programming for systems ranging from a single-axis device to a multi-arm robot. The TEAM API working
group's initial focus was to establish programming requirements for precision machining. Applicability to
other control environments may be possible but is not be guaranteed. The TEAM API primary focus has
been to de�ne Application Programming Interfaces for certain modules that the ICLP community routinely
wants to upgrade. In addition, the workgroup has de�ned an assembly framework with which to connect
these modules.

The TEAM API e�ort is not all-inclusive. The focus of e�ort has been to develop module APIs and to
create a methodology for assembling and recon�guring modules. The desire is that the the methodology is

27

general enough to handle most architectures, but speci�c enough to o�er a path to standardization. At this
time, the TEAM API e�ort discusses, but does not attempt to specify procedures, for such issues as the
following:

� con�guring modules,

� performance evaluation,

� validation, veri�cation,

� resource pro�ling and environment.

TEAM API has posted on the Web numerous documents describing the module API. Other papers
describe related TEAM API information on life cycle, general computation models, and control models. For
more information, see the Wide World Web at the Universal Resource Locator address:
http://isd.cme.nist.gov/info/teamapi.

Acknowledgements

The authors would like to thank Harry Scott for his detailed technical review and Janet Land for her
signi�cant editorial assistance.

References

[Alb91] J.S. Albus. Outline for a theory of intelligence. IEEE Transactions on Systems, Man, and Cyber-
netics, 21(3), may/june 1991.

[COR91] Object Management Group, Framingham, MA. Object Management Architecture Guide, Docu-
ment 92.11.1, 1991.

[DCO] Distributed Common Object Model.
See Web URL: http://www.microsoft.com/oledev/olemkt/oledcom/dcom95.htm.

[IEC93] International Electrical Commission, IEC, Geneva. Programmable controllers Part 3 Programming
Languages, IEC 1131-3, 1993.

[Inta] International Organization for Standardization. ISO 10303-42 Industrial Automation Systems and
Integration Product Data Representation and Exchange - Part 42: Integrated Resources: Geometric
and Topological Representation.

[Intb] International Organization for Standardization. ISO 10303-42 Industrial Automation Systems
and Integration Product Data Representation and Exchange - Part 105: Integrated Application
Resources: Kinematics.

[M.S86] M.Shapiro. Structure and Encapsulation in Distributed Systems: The Proxy Principle. In 6th
International Conference on Distributed Computing Systems, pages 198{204. IEEE Computer So-
ciety Press, May 1986.

[NGI] Next Generation Inspection System (NGIS).
See Web URL: http://isd.cme.nist.gov/brochure/NGIS.html.

[OMA94] Chrysler, Ford Motor Co. , and General Motors. Requirements of Open, Modular, Architecture
Controllers for Applications in the Automotive Industry, December 1994. White Paper { Version
1.1.

[OSA96] OSACA. European Open Architecture E�ort.
See Web URL: http://www.isw.uni-stuttgart.de/projekte/osaca/english/osaca.htm, 1996.

28

[PM93] F. M. Proctor and J.L. Michaloski. Enhanced Machine Controller Architecture Overview. Tech-
nical Report 5331, National Institute of Standards and Technology, December 1993.

[SOS94] National Center for Manufacturing Sciences. Next Generation Controller (NGC) Speci�cation for
an Open System Architecture Standard (SOSAS), August 1994. Revision 2.5.

29

